- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bertram, Allan K. (1)
-
Evoy, Erin (1)
-
Kamal, Saeid (1)
-
Karydis, Vlassis A. (1)
-
Lelieveld, Jos (1)
-
Li, Ying (1)
-
Maclean, Adrian M. (1)
-
Reid, Jonathan P. (1)
-
Rovelli, Grazia (1)
-
Shiraiwa, Manabu (1)
-
Tsimpidi, Alexandra P. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Information on the rate of diffusion of organic moleculeswithin secondary organic aerosol (SOA) is needed to accurately predict theeffects of SOA on climate and air quality. Diffusion can be important forpredicting the growth, evaporation, and reaction rates of SOA under certainatmospheric conditions. Often, researchers have predicted diffusion rates oforganic molecules within SOA using measurements of viscosity and theStokes–Einstein relation (D∝1/η, where D is the diffusioncoefficient and η is viscosity). However, the accuracy of thisrelation for predicting diffusion in SOA remains uncertain. Usingrectangular area fluorescence recovery after photobleaching (rFRAP), wedetermined diffusion coefficients of fluorescent organic molecules over8 orders in magnitude in proxies of SOA including citric acid, sorbitol,and a sucrose–citric acid mixture. These results were combined withliterature data to evaluate the Stokes–Einstein relation for predictingthe diffusion of organic molecules in SOA. Although almost all the data agreewith the Stokes–Einstein relation within a factor of 10, a fractionalStokes–Einstein relation (D∝1/ηξ) with ξ=0.93is a better model for predicting the diffusion of organic molecules in the SOAproxies studied. In addition, based on the output from a chemical transportmodel, the Stokes–Einstein relation can overpredict mixing times of organicmolecules within SOA by as much as 1 order of magnitude at an altitudeof ∼3 km compared to the fractional Stokes–Einstein relation with ξ=0.93. These results also have implications for other areas such as infood sciences and the preservation of biomolecules.more » « less
An official website of the United States government
